Chapter 6

Work and Mechanical Energy

6.1 INTRODUCTION

Note:

There are many formal developments and new definitions in this chapter, and the point of
the development probably will not be immediately obvious to the student. For that reason
we attempt to put the new material in perspective. In the last chapter, we showed how
Newton’s second law can be applied to solve particular problems involving the motion of
an object. In general, when the forces vary in both magnitude and direction, it may be
very difficult to solve for the path of the motion, or for the velocity of the object.

The concept of work and its relationship to kinetic and potential energy gives us the
ability to solve relatively easily many problems that would otherwise be difficult. The
associated theorem of conservation of mechanical energy often can reduce otherwise
complicated problems to a simple “bookkeeping” operation. Most importantly, our
development of mechanical energy can be generalized so that the concept of energy, its
transfer between systems and its overall conservation, applies beyond the subject of
mechanics. Indeed, it has become one of the great underlying principles of the physical
universe.

6.2 THE NATURE OF WORK

Work of a Constant Force

The work W due to a constant force F acting on an object while it moves through a displacement
s is defined as the component of F along the s direction multiplied by the magnitude of s:

Wg = Fygs = (F cos 0)s (6.1)

See Fig. 6-1. Even though the work involves the two vector quantities F and s, it itself has no direction
and is thus a scalar. The units of work are those of force times distance. The SI unit of force is thus
the newton-meter, which is given the special name the joule: 1 J=1N-m. Other units are
the erg: 1 erg = 1 dyne - cm, and the foot-pound (which is not given a special name). Conversion
between units gives:

1J= (1.0 x 10° dyn) (1.0 x 10? cm) = 1.0 x 107 dyn - cm = 1.0 x 107 ergs
1 ft-1b = (0.3048 m) (4.45 N) = 1.356 N - m = 1.356

)
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Fig. 6-1
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Problem 6.1. Find the work done by the force F in moving through the displacement s in each of the
cases of Fig. 6-2(a), (b), and (¢).

Solution

(@) Wg=F cos 0-s= (20 N)(cos 30°)(6.0 m) = (20 N)(0.866)(6.0 N) = 104 N-m = 104 J.
(b)) We= (100 dyn)(cos 37°)(12 cm) = 960 dyn-cm = 960 ergs.

(¢) Wgr = (40 Ib)cos 50°)(6.0 ft) = 154 fi-1b.

_ F=401b
. F=20N F =100 dyn
50° o 37° o >0° -
s=60m l s=12.0 cm " 5= 6.0 ft
(@) (2] ©)
Fig. 6-2

Problem 6.2. Find the work done by the force F in the cases of Fig. 6-3(a) to (d).
Solution
(@ Wg = (50 N)cos 53°)30 m) = 900 J.

(b) Here the component of F along s is negative, so Wz = (50 N)(cos 120 B30 m) =
—(50 N)(cos 60°}30 m) = —750 1.

() Here the component of F along s is zero, since § = 90°. Thus W = 0. This is generally true when
the force and the displacement are at right angles to each other.

(d) Wp = —(50 N)(cos 30°)(30 m) = —1300 J.

Note. The work is defined so that it can be positive, negative, or zero, depending on whether the -
component of F along s is positive, negative, or zero.

Problem 6.3. A block is moving on a horizontal frictional surface under the action of a number of
forces, as shown in Fig. 6-4. Determine whether the work done by each force is greater than, less than,
or equal to zero.

Solution

WF1>0, WF2>05VVf<Oa WWZO, WN:()-

Problem 6.4. A man lifts a book vertically with his hand. Find the sign of the work done by (@) his
hand on the book, (b) gravity on the book, (c) the book on his hand.

Solution
(@) The hand exerts an upward force on the book as the book moves upward, so the work is positive.

(b) The force of gravity is always pulling downward, so when the book is moving upward, gravity does
negative work.
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Fig. 6-3

() The book exerts a reaction force downward on the hand. Since the hand is moving upward, the
work done by the book on the hand is negative.

Total Work Done by a Number of Forces

The work done by each force is, by (6.1), the component of that force along the displacement of
the object, times the magnitude of the displacement. Since the displacement is the same for all the
forces acting, the total work is just the sum of the components of the individual forces times the
magnitude of the displacement. But the sum of the components of individual vectors along a given
direction is just the component of the resultant vector along that direction. We therefore conclude that
the total work done is just the work by the resultant force.

Problem 6.5. In Fig. 6-4, assume that F; = SON, F, =20 N, w = 100 N, 6 = 30°, ;. = 0.25, and
s = 15 m. Evaluate (a) N and f, (b) the work done by each force, (c) the total work due to all forces,
(d) the x and y components of the resultant force, (e) the work done by the resultant force.

Solution

(@) Since there is no acceleration in the vertical direction,

S0, N=100 N — (50 N) sin 30° = 75 N. Then, f; = i;:N = (0.25)(75 N) = 18.8 N.

YF,=0 or Fisinf+N-w=0
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Fig. 6-4

(B) Wen = Frus = (Fy cos 30°)s = (50 N)(0.866)(15 m) = 650 J.
WFZ = szs = FzS = (20 N)(IS m) = 300 J.
W= fus = —fos = —(188 N)(15 m) = —282 1.
W, =wws=01L
Wy=Ns=01J.
©) Wi = Wi+ Wiy + We+ W, + Wy =650J+300J — 282 J =668 I

(@) R,=Fi+Fon+fixtw+Ny=433N+20N — I88N+0ON+0ON=445N.
R,=Fy, + Fy + fiy +w, + N,=25N+ON+ 0N — 100 N+ 75 N=0N.

(¢) Wi =Rs=(44.5 N)(15 m) = 668 J [checks with (¢c)].

Problem 6.6. A block of mass m = 5 kg slides down an inclined plane of length L = 15 m and
angle 0 = 37°, as shown in Fig. 6-5. Calculate the work done by each force acting on the block, as
well as the total work done by all forces, as it traverses the incline from top to bottom, if () the incline
is frictionless, (b) the coefficient of friction is ;. = 0.30.

A m
L
h
&
Y 6 <
<+
Fig. 6-5

Solution

(@) The only forces acting on the block are the weight w = mg and the normal force N. The normal
force is perpendicular to the direction of motion so it does no work. The component of the weight
along the incline is

w, = mgsin37° = (5 kg) (9.8 m/s*) (0.60) = 29.4 N
Hence, W,, = w,L = (29.4 N)(15 m) = 441 J. This is also the total work done.
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(b) There are now three forces acting on the block. The weight is the same as before and the work done
by it is still #,, = 441 J. The normal force still does no work, but we must now obtain its value in
order to determine the frictional force f;. Since the block is in equilibrium in the y-direction, we
have

N =mgcos37° = (5 kg) (9.8 m/s”) (0.80) =392 N

Then fi=uN=(03)392N)=11.8 N. Finally, the work done by friction is W;=fL =
—(11.8 N)(15 m) = —177 1. The total work done is then Wr=441J] — 177 J = 264 1.

Work of a Variable Force

Suppose the force F acting on a particle changes in magnitude and/or direction as the particle
moves from position to position. The particle need not be moving in a straight line. We want to extend
our definition of work to that done by this force as the particle moves between any two positions on its
path of motion. Consider a particle moving along the path of motion shown in Fig. 6-6(a), which is
acted on by the force F (in addition to possible other forces not shown). The force F is shown at a
number of different points along the path.

We now imagine breaking up the path into a large number N of small intervals, each one of which
is nearly a straight-line segment. If the segments are small enough, we can assume the force is nearly
constant within each segment. We can approximate the path by a succession of small displacements,
As;, i=1,2,3,..., N, as illustrated in Fig. 6-6(b), over each of which F is constant and the small
amount of work done by F is AWy = F cos 0 - As, where 0 is the angle between F and As. Adding up
the work over all the little displacements, we get

Wr =3 F;cos0; As; (6.2)

In the limit, as the number of intervals N approaches infinity and the size of each interval approaches
zero, the approximation to the actual motion becomes exact. It is therefore natural to define the work
done by the force F over the path from 1 to 2 as the right side of (6.2) in the limit as N — oo and
As; — 0. Note that as we approach this limit, the As’s become tangent to the path (and their lengths
are the corresponding arc length intervals), and 0 becomes the angle between F and the tangent to the
path at each point.

If we knew the magnitude of F and the angle it makes with the tangent to the path at every point
along the path, we could find the work graphically by plotting F cos 6 as a function of the arc length §
measured from some reference point R along the curve. The component of F tangent to the path at
each point, F' cos 0, is a function of the arc length s. Figure 6-7 is an example of the plot of F cos 6
vs. s, with points 1 and 2 of our path indicated on the s axis. We divide the s axis between points 1 and
2 into a large number of closely spaced strips. Equation (6-2) is then represented on the graph as the
sum of the area of the rectangles, which are bordered by the vertical strips on the sides, the s axis on
- the bottom, and the average value of F; cos 6, in each interval on the top. It is not hard to see that the
sum of the areas of these rectangles approximates the actual area under the curve. Indeed, as the
number of rectangles goes to infinity, and the width of each rectangle goes to zero, we get the exact
area under the curve. (This is similar to our discussion of the v vs. ¢ graph in Chap. 2.) Thus

Wr = area under the F cos ) vs. s curve (6.3)

between the starting and ending points of interest (1 and 2 for our case).

Problem 6.7. What does the F' cos 0 vs. s graph look like for the force F; of Problem 6.5? Use the
graph to calculate the work done by F; in a displacement of 15 m.
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Solution

‘In this case the path is a straight line along the horizontal (x) axis, so if we choose the origin as our
reference point for s, then s=x. In this case F,=F,cos 0 is constant and in fact equals
(50 N)(0.866) = 43.3 N. The plot of F, vs. x is thus the horizontal line shown in Fig. 6-8. The work
done in a 15-m displacement, say from x=0 to x=15m, is the area under the curve:
(43.3 N)(15 m) = 650 J.
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Problem 6.8. A block sitting on a frictionless horizontal surface is attached to a wall by means of a
spring, as shown in Fig. 6-9(a). A stretched spring exerts a force whose magnitude is proportional to
the length of stretch: F;, = kx. The proportionality constant  is called the force constant of the spring.
If a force F pulls the block to the right in such a way that it just balances the force due to the spring at
every instant, calculate the work done by the force F on the block in stretching the spring (a) from the
unstretched position through some arbitrary distance x, (b) from x; to x».

M e e

——

@ ®)
Fig. 6-9
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Solution

(@) As in Problem 6.7 the path is a straight line along the horizontal x axis, and again s = x. We take as
the origin the position of the block when the spring is unstretched. Then the displacement of the
block will always correspond to the stretch in the spring. Since F' balances the spring force,
F = F, = kx. Our F, vs. x graph is thus the straight line shown in Fig. 6-9(b). The work done in
moving from the origin to point x is the area of a right triangle of base x and height kx, or

We = 1) (he) = 1k

(b) The work done by F in going from x; to x; is the shaded area in Fig. 6-9(b). This equals the
difference in the areas of the triangle from the origin to x, and the triangle from the origin to x;:

W)y = g =3k

Problem 6.9. Repeat Problem 6.8 for the force Fip.
Solution

Since F and F, are equal and opposite, the work done by Fg, is just the negative of the work done
by F:

Wep = _%kxz (VVSP)I—>2 = %kxlz - %kaZ

Problem 6.10. Find the work done by each indicated force in Fig. 6-10.
Solution

Each force shown is perpendicular to the displacement at every moment, so it does zero work.

@ ®) ©
Fig. 6-10

6.3 KINETIC ENERGY AND ITS RELATION TO WORK

Consider a block on a frictionless horizontal surface, acted on by a constant horizontal force F, as
shown in Fig. 6-11. The acceleration is then constant, and, by (2.10) V= vg2 + 2a(x — xp). If

we multiply both sides of the equation by half the mass, m/2, and bring the v, term to the other side,

we get ma(x — xg) = %mv2 - %mvoz. Since F is the resultant force on the block, we have
2 1

F = ma; thus F(x — xo) = im* — Lmv,’. The left side is just the total work W done on the block in
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moving from x, to x. If we relabel the initial position x, and velocity vq as x; and v;, respectively, and
relabel the final position x and velocity v as x, and v,, respectively, we get

(Wr)1 .y = 3mvy® — 3mv, 2 (6.4)
The expression %mv2 is called the kinetic energy of the mass m. The symbol for kinetic energy varies
from textbook to textbook. Common symbols are K, KE, and E, and we will use the last in this book.
Thus (6.4) becomes

(Wr), 7 = Exo — Ex = AE, (6.5)

where AE, represents the change in Ej in going from the initial to the final position. The kinetic
energy has units of work, and the SI units are joules. Equation (6.5) is called the work-kinetic
energy theorem.

This result was derived by assuming constant acceleration, so we have shown its validity only
when the resultant force acting on the object is constant.

Yo v
—_— —_—
a o ———— — | a
—— ——
1
l X0 x
w
N
Fig. 6-11

Problem-6.11. Assume the block in Fig. 6-11 has a mass m = 10 kg and the force F = 25 N.

(@) If the block has an initial velocity v; = 20 m/s, use the work—kinetic energy theorem to find its
velocity v, after it has moved through a displacement of 20 m.

() Redo part (a) using Newton’s second law.
Solution

(a) Using Eq. (6.4), we have (Wp);_, = (25 N)(20 m) = 500 J = 1(10 kg)v,> — 1(10 kg)(20 m/s)>.
Then

122 = 500 m?/s? or v,=224m/s

() Using F =ma, we have 25 N = (10 kg)a or a =2.5 m/s>. Then v,> = v;> + 2a(x, — x;) =
(20 m/s)* + 2(2.5 m/s?)(20 m) = 500 m?/s” so v, = 22.4 m/s, as before.

In the previous problem, the work—kinetic energy theorem does not seem to be any more useful
than the standard F' = ma approach. This is because for constant-force problems it is very easy to
apply Newton’s second law. This is no longer the case for more complicated problems, where the
acceleration varies in either magnitude or direction, or both.

It can be shown, using the calculus, that the work—kinetic energy theorem (6.5) is still true for the
most general possible situation. No matter how complicated the path of motion, and no matter how
complicated and how numerous are the forces acting on the object, the total work done on the object
in any interval equals the final minus the initial kinetic energy for that interval. Thus, for example, if
the particle moving along the path in Fig. 6.6(a) has a velocity of magnitude v, as it passes point 1 and
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a velocity of magnitude v, as it passes point 2, then those two speeds are related by Eq. (6.5), where
(Wy)1 -2 is the total work due to all forces. The full power of this result will be recognized once we
have introduced the concept of potential energy.

6.4 GRAVITATIONAL POTENTIAL ENERGY

Consider a block of cement being hoisted vertically by a crane (Fig. 6-12). The only two forces
doing work are the tension S and the pull of gravity F,. Then in moving the block from position 1 to
position 2, the total work is the sum of the work by the two forces, so (6.5) becomes

(Wr)y g =Ws)) o+ (We)1 o = AE

A7 Ay

N Fy=mg

Isolating the work done by S on the left side of the equation, we have
(WS)1—>2 :_(Wg)1—>2+AEk (6.6)

The work done by the force S depends on how the hoist is operated; s can vary from moment to
moment and position to position. The work done by gravity, however, is predetermined, since (near the
earth’s surface) we have F, = mg, pointing vertically downward, as shown. Then

(We)y oy = —mgn -1) or — (We)1 .y = mgyr — mgy1 (6.7)

We notice that — W, depends only on where one started and where one ended and not on the details of
the block’s motion. The quantity mgy is called the gravitational potential energy £, of a mass m at
height y. Then Eq. (6.7) becomes

—(We) o2 =Ep — E; = AE, (6.8)

Substitution of (6.8) into (6.6) yields -
(Ws)y ., = AE, + AE (6.9)

It can be shown that Eq. (6.7) is true for any path of motion of an object near the earth’s surface.
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Consider an object moving on an arbitrary path, such as in Fig. 6.6(a). We divide the total work
Wrinto two parts: the work done by gravity W, and the work done by all other forces acting on the
object W'. Then

W) ma =Wi_ 2+ (W) _» =E — En
and Wll_>2 = _(Wg)l—>2 + Ep — En (610&)

or W _,=(Epn—Ey)+ (Ex — En) = AE, + AE, = (mgy, — mgy) + Gmvy? — imv %)
(6.100)

Equation (6.10b) is a very general statement: The work done by all forces other than gravity on an
object equals the sum of the changes in the gravitational potential energy and kinetic energy of the
object.

\

Problem 6.12. Use work-energy considerations to calculate the velocity of the block of Problem
6.6(b) when it just reaches the bottom of the incline, assuming it starts from rest at the top. All data are
as in Problem 6.6(b).

Solution

Measure vertical displacement z from the bottom of the incline. Then E, = mgz. The only acting
forces besides gravity are the frictional force up the incline, f; = N, and the normal force N. Since N
does no work on the block, we have

W =Wy =—fil=—wNL=—p(mgcost)L =—1771]
as was already determined in Problem 6.6(5). Then (6./0b) becomes
—1771 = (mgz; — mgz) + (Amv,2 —Imn ?) (i)
where the labels 1 and 2 refer to the top and the bottom of the incline, respectively. Substitute v; = 0,
z; =L sin 0 = (15 m)(0.6) = 9.0 m, and z, = 0 in (i) to obtain
~177 3 = [0 — (5.0 kg) (9.8 m/s?) (9.0 m)] + [1(5.0 kg)v,2 — 0] (ii)
Solving (if) we obtain

V22 = 106 m? /s? or v, =103m/s

In Egs. (6.9) or (6.10b), only the difference in the potential energy between two points appears. The
definition of the potential energy can therefore be changed by adding or subtracting a constant without
changing the energy equations.

Problem 6.13. Consider the situation in Fig. 6-13, where a book of mass m is lifted above a
tabletop, and y is the displacement measured from the tabletop to the bottom of the book. Choosing
E, = mgy means that E, = 0 when y = 0 (the book rests on the table). If we prefer our zero of
potential to be at the floor level, find the new expression, E¥, for the potential energy.

Solution

E; =mgz. Since z=y+h, we have E; =mg(y + h)=mgy + mgh=E, + const. Therefore
potential-energy differences are the same for the old and new functions.
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Problem 6.14. Suppose the incline of Problem 6.12 were set on a tabletop of height 7 = 2.0 m, as

shown in Fig. 6-14. Repeat Problem 6.12 if the zero of gravitational potential is set at the bottom of
the table. '

H=20m

Fig. 6-14

Solution

We proceed as in Problem 6.12. Everything is the same as before except that the initial and final
heights are z; and z, instead of y; and y,. Then z; =2.0m+ Lsin §=2.0m+ 9.0 m=11.0 m;
z5 = 2.0 m. Substituting into Eq. (i) of Problem 6.12, we get

—177J = (5.0 kg) (9.8 m/s%) (2.0 m) — (5.0 kg) (9.8 m/s*) (11.0 m)] + [£(5.0 kg)v,? — 0]
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Therefore —177 J = —441 J + (2.5 kg)v,?, so that
v’ =106 m?/s? or vy = 103 m/s

as before

6.5 MECHANICAL ENERGY AND THE CONSERVATION PRINCIPLE

If it should happen that no forces other than gravity do work, then W' = 0, and (6.10b) becomes
AE, + AEy = (Epp — Ep1) + (Eip — Ep) =0
which rearranges to
Epy+ Epp = Ep1 + Enp (6.11)

The sum of the potential and kinetic energies at any point is called the total mechanical energy £ at
that point:

Er = E, + E; = mgy + 1m? (6.12)

Thus Eq. (6.11) says that the total mechanical energy of an object stays constant (“is conserved”)
throughout its motion if no forces other than gravity do work. This is an example of the conservation
of mechanical energy. It is important to remember that Eq. (6.11) is a special case of Eq. (6.10b),
which is the general work-energy theorem.

Problem 6.15. Assume that in Problem 6.12 the incline is frictionless, as in Problem 6.6(a).

(a) Use energy considerations to show that the velocity at the bottom of the incline is v = 1/2g#,
where 4 is the height of the incline.

(b) Use F = ma to obtain the same result.

Solution

(@) Since there is no friction and the normal force does no work, the only force that does work on the
block is gravity. Thus the conditions for Eq. (6./7) hold and mechanical energy is conserved.
Again letting the zero of potential energy be at the bottom of the incline, we get (noting y, = 0 and
vy = 0)

2 2

mgy; + %mvl =mgy; + %mvz or mgy; +0=0+4 %mvz2
Noting y; = h, we drop the subscript 2 and solve for v, getting v = /2gh.

(b) Again, since there is no friction, the only force along the incline is the component of the weight,
mg sin 0. Then choosing our axis along the incline with downward being positive, we have

a=—=gsinf
m

Then, for constant acceleration, starting from rest, we have v* = 2aL, which gives the velocity at
the bottom of the incline. Substituting for a, we get

V2 =2(gsinf)L =2gLsin@ =2gh  or  v=+/2gh
as before.

Problem 6.16. Suppose that instead of an inclined plane, as in Problem 6.15, we had a block sliding
down a frictionless curved surface, as in Fig. 6-15. Assume the block starts from rest at a height 4, as
shown.
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Fig. 6-15

(2) Find an expression for the velocity of the block at point 2 using energy considerations.
(b) Can you repeat part () using Newton’s second law?
Solution

(a) As in Problem 6.15, we label the starting position 1 and the ending position 2 and choose the zero
of potential energy to be the bottom of the curve. Since there is no friction, and since the normal
force at any point on the curve is perpendicular to the path of motion and can do no work, we again
have the conditions for conservation of mechanical energy. Then

-mgy1 +3mvi? = mgy; +5mvy?

Therefore mgh + 0 = 0+ Imv,? or vy = 2gh

Dropping the subscript on the final velocity we have: v = /2gh.

Note that this is the same expression we got in Problem 6.15 with the frictionless incline.
Indeed, this result was obtained without knowing the exact shape of the curve, and hence is true for
all curves for which the block will reach the bottom point.

(b) We first note that the block is no longer traveling in a straight line, and the normal force varies in
both magnitude and direction from point to point. Solution of the problem thus requires the full
vector properties of Newton’s second law, as well as dealing with variable forces. The problem can
still be solved but requires the use of the calculus.

Problem 6.17. Consider a block sliding on the frictionless surface shown in Fig. 6-16.

Fig. 6-16
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(a) If the block starts from rest at point 1, find its velocity at point 2 and describe its subsequent
motion.

(b) If the block were observed to reach point 3 with velocity v; = 3 m/s, what must have been its
initial velocity at point 1?

(¢) Under the assumption of part (b), what is the block’ velocity as it reaches point 4?
Solution

(@) mgy, + %mvl2 = mgy, + %mvz2 or mgy; +0= %mv22 + mgy, and

va =28 — ) = \/2(9.8 m/s?) (5.0 m — 2.0 m) = 1/58.8 m?/s? = 7.67 m/s

The block will continue along the curve until it reaches the original height, 5.0 m, which will occur
at some point @ between points 2 and 3. At a it must have zero kinetic energy and hence zero
velocity. It will then slide back down the curve, passing point 2 with the same magnitude of
velocity as before but in the opposite direction. This follows by again applying Eq. (6.11). The
block will continue slowing down, until it comes to rest at point 1. The motion will then repeat
itself. This will go on forever as long as Eq. (6.11) truly holds, that is, as long as there is no friction
or work done by any force except gravity.

(b) To reach point 3, which is higher than point 1, the block must have had an even greater velocity at
point 1. In fact (6.11) gives

mgy —l—%mvl 2= mgys + %mw2
from which
w2 =w2+2g(» — ) = (3 m/s)* +2(9.8 m/s?) (6.0 m — 5.0 m) = 28.6 m?/s?

or v =5.35m/s

(c¢) Apply (6.11) between points 3 and 4:

mgy3 +%mV32 =0 +%mV42

Va2 =n?+2gys = 3 m/s)? +2(9.8m/s%) (6.0 m) = 126.6 m?/s2  or  vg=113m/s
We could equally well have applied Eq. (6.11) directly between points 1 and 4:
mgy1 + 3mvi? = mgy, + imv,? or  w?=wv?4+2gn
Substituting, we get
vs? = (535m/s)* +2(9.8 m/s?) (5.0 m) = 126.6 m2/s>  or vy =11.3m/s

as before.

6.6 ENERGY TRANSFER BETWEEN SYSTEMS

In Problems 6.15 to 6.17 we have used the conservation of mechanical energy, Eq. (6.11), to
obtain the velocity at one point in the motion if we know the velocity at another point. We can say
that, for the simple system consisting of a block acted on by the earth’s gravity, one form of energy
can be transformed into another form but the total energy cannot be changed. This is true, however,
only when W' = 0 in Eq. (6.10b), and hence only when no forces other than gravity are doing work on
the system. In such a case our system’s energy is isolated from, or closed to, the rest of the universe.






